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H. D. Mittelmann

Department of Mathematics
Arizona State University., .,
Tempe, Arizona 85287

Abstract Recently the author together with R. Bank has developed, Implemented,. -

and successfully applied a continuation technique for the numerical solution of

parameter-dependent nonlinear elliptic boundary value problems. The method was

Integrated Into an existing multi-grid package based on an adaptive finite

Selement dpscretizaton. -Weresent the continuation method and prove~an .0

important theoretical result for the corrector iteration. For the Bratu problem

- u= eon the square with homogeneous Dirichlet conditions *e- showhow

spurious solutions may be encountered while computing relevant solutions, how

the program handles those and how it allows to detect them.
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1. Introduction.

In the following we consider the parameter-dependent nonlinear problem

(1.1) G(u,a) = 0,

* M

where G: Xm Rp  Xm, X a suitable function space and a a vector of real

parameters. (1.1) will typically represent a parameter-dependent nonlinear

elliptic system of dimension m and order two. Important examples are the VLSI

device simulation equations

g(u,v,w) - A u + eu-v -eWu -kt = 0

(1.2) g2(u,v,w) V*IneUV v v + k2= 0

w- Ug3 (u,vIw) -- e V w + k2= 0.

In this case the parameters a enter the boundary conditions If, for example,

current-voltage characteristics are to be determined (cf.[3]). ,.%.-.*

The solution manifold G- (0) of (1.1) may have a very complex structure.

In practical applications It is frequently desirable and sufficient to compute

certain cross-sections of it, i.e. all parameters a are kept fixed at certain

values and for simplicity suppressed except one which we will call X. A simple WY

graphical representation of this cross-section may be obtained if a functional

of the solution Is depicted versus A. It should be noted, however, that usually

In these applications such functionals are In fact important pieces of

information, such as the currents for (1.2).

.0.,b'E- ,



We assume that a vector

(1.3) R(u(X)), R : m *

of differentiable functionals is given and that most of the important .

.
information about the problem can be obtained from the k x p diagrams . -

(1.4) Ri =R (u(a3)), i = 1, ... , k, j = 1, ... , p

and the corresponding solutions.

The solutions u(X), X = ail in (1.4) and from them the curves RI(u()).

usually have to be computed In a continuation fashion. Starting from a known

solution u(XO) another solution is computed by utilizing a predictor-corrector

scheme. Frequently an initial solution to start this continuation procedure is

not known and has itself to be determined from an approximate solution. Along

the solution curves singular points have to be expected and our goal is to

provide methods to locate these points, to overcome turning points and to switch

branches at bifurcation points. .

In the following section we will outline a continuation algorithm that has .,

been successfully used for the scalar case (m = 1 in (1.1)). It provides an
*

efficient and robust method and has been implemented for a general class of

second order elliptic boundary value problems discretized by finite elements in

[2]. The continuation method is applied on a coarse triangulation of the given

domain and fine grid approximations at arbitrarily specified points are obtained

by multi-grid.

,*,',.,.1
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2. The Continuation Method

In the following we assume that a choice of the parameter X a in (1.1), %

(1.3) and also of the functional Ri in (1.4) has been made and denote (1.1) by

(2.1) G(u,X) = O, C • x R + Xm ,

and R by r.

The parametrization of the solution u of (2.1) by X and thus of r by X need ...

not be possible In general. Let s denote the arclength along a solution curve

(u,X) = (u(s), X(s)) of (2.1). Then under sufficient smoothness and regularity

assumptions this latter dependence is differentiable and thus (GO- G u(U0 9 )

etc.).

(2.2a) GO + Go 0 0,u

(2.2b) W 0oM2 + =1 Or

In a solution (uO,XO) = (u(so), (so)) of (2.1). Here, subscripts stand for

partial derivatives and a dot for differentiation with respect to s.

In singular points (uO,XO) of (2.1) the linear operator GO in (2.2a) is

singular and, for example, a solution by Newton's method breaks down. This

singularity may be removed or reduced by augmenting (2.1) by a normalizing

equation, a well-known example of which Is

(2.3) N (u,aX,o) =- uo(u-uo) + (2-0)!o(X-Xo) - So = 0

"J_-- J A

*,*-." - -
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which approximates (2.2b). o is called the pseudo-arclength parameter. e

satisfying 0 < 0 < 2 may be used as a weighting parameter.

Instead of (2.3) we propose to use

(2.4) Nr (u,X,O) - 8(r-ro) + (2-e)l (X-XO) - = 0,

where r0 = r(uo), rO = d r(u))o 0 and r denotes the above functional. From

.da'
(2.4) we see that the three values e = 0,1,2 are special in the sense that for

8 = 0(2) the augmenting equation characterizes points with a fixed X(r) - value,

e while for e =1 this point lies on a hyperplane orthogonal to the solution arc

In (ro,XO).

This suggests to use target values in the two (physically relevant) .

variables r and X. Such a strategy seems appropriate as long as starting from a I.

point on the solution curve another point corresponding to a suitably chosen

target value can be computed In a small number of (corrector) iterations. This

was achieved for the scalar case of (2.1) and the choice

(2.5) r(u) = 4 0.

C The following class of nonlinear boundary value problems in the plane

- V a(x,y,u,Vu,X) + f(x,y,u,Vu,X) = 0 in Q,

(2.6) u = g1 (x,y,X) on 151,.

a • n = g2 (xyqu,) on A2 =  
41

2 . .was considered. Here, 0 is a connected domain in R with boundary IQ, n is the .....

C
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unit normal vector on M, a = (at,a 2 )T and aj,a 2,f,g1 ,g2 are given scalar

functions. Pp

In [2] the program PLTMG, an Implementation of an adaptive finite element

multi-grid method combined with the continuation technique presented below is

described In detail. In addition to some theoretical results on the

continuation method [12, 13] contain numerical results for several problems from

the applications including problems with turning-points, symmetry-breaking and
*J -% °

other bifurcation points as well as parameter-switching for cases depending on

several (p > 1 in (1.1)) parameters. [13] also contains a comparison with the

classical pseudo-arclength continuation method. Other problems to which the ,. .

program has been applied successfully are Steklov elgenvalue problems for which

the Dirichlet condition In (2.6) is parameter-dependent.

The predictor step which is crucial for the performance of the method .

determines predicted values of the form

u % (1+y)uo + 8

(2.7)( 1(
.-. "°.°.4

p X0+ ai0-= 'i'

such that a,B,y satisfy the three equations
o ." -4

N(u ,xo) = 0,
p p

((O,G(u p, p)) = 0, Mr-

p p

"A 0

4, .%.

., .. ,.4.~
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in a least-squares sense. Here it is assumed that X is a Hilbert space and

(. , . ) denotes its inner product.

In the corrector iteration the augmented system

G(u,X)T'-. .'

(2.9) F(y) 0, y (uT,X)
N(u,X,a)

is solved by Newton's method starting In (u pIp ). The restriction of the

problem (2.1) to the (r,X)-plane in case N = N is used in (2.8) introduces an
r

additional singularity in exceptional points.

C If in a solution (uo, XO) simultaneously ro = 0 and 10 = 0 then the

normalizing condition (2.4) is not well-defined. This situation occurs In

symmetry-breaking pitchfork bifurcation points, see [11]. We propose to switch

temporarily to the augmenting equation (2.3) which, as explained in [12] may be

viewed as asymptotically equivalent to a version of the generalized inverse - ry

iteration ([10]) exploiting symmetries In such bifurcation points. The precise

choice of N Is given by (cf. [13]).

;01 < E Ru0n N : No, 8 0,

(2.10) ;01 > (1-E) lUoi : N N 0 0, ' = 0,

C < 0 (1-c) Ruo, N = Nr, 0 < a < 2.
r..

lop-
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3. The Corrector Iteration

A point (u , X ) computed by the predictor of the previous section is used
p p

as a starting guess for an iterative solution of the augmented system (2.9).

This Is done by Newton's method and thus the 3acobian

(3.1) F= u N
( Nu N) .

has to be evaluated and inverted. . 6V

While (2.10) prescribes which N to choose It does not completely define the

augmenting equation. The weighting parameter 8 still has to be picked and we J. .#.

assume that r respectively X is not used as parameter to continue past a

turning point in r respectively X. This yields 0 * 0 if 10 = 0 and 8 * 2 if

;0 = 0. Under these assumptions it was shown in Proposition 4.2 of [131 that F
y

is regular except in bifurcation points. .4_4 :

When computing in a neighborhood of a bifurcation point the growth of

IF I is crucial for the convergence of Newton or other iterative methods used
y

as corrector, cf. [7]. We give here the detailed proof of Proposition 4.3 in

[13]. Let locally near the simple bifurcation point y0 = (uo,Xo) solutions be

parametrized by s such that without restriction of generality yo = (u(O),X(O)).

We assume in the following that yo = ((0),j(0)) Is a nondegenerate ray In the

sense of [8].

.' .- ..

Theorem 3.1 If the normalizing condition N is chosen according to (2.10) then
,% '..

on any of the branches passing through the simple bifurcation point

yo= (u(O),A(O)) of (2.1) for S > 0 sufficiently small

9 • ~,. %*.

-. . -. 4.
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*(3.2) 11 F 1 (y(s) = O(IsK-), 0 < II<
Y_ IA?

Proof. As mentioned in [13] we have to generalize the proof of Theorem 1 in

* [8]. This proof covers the case N = N0 so that it remains to consider
CF/

N = N r. We note that the row-vector a0  (N UYN) in (3.1) is not constant in

this case, in fact

(3.3 ao~) = rou(s)
(3.3)( ,os (2-6)X0)

* Let us further denote H(y) =G(u,X) and thus .

H' (C G G Rn + Rn F = (H'
u X' y a0 )

As in [8] we introduce the one-dimensional space X, C Rn+ spanned by

;0=u0,10) Ton one of the branches, the one-dimensional subspace X2 C: +

such that the kernel K(H'(yo)) satisfies K = X1 X2, and the (n-l)-dimensional

n+1
subspace X3 such that R =X 1 @ X2 (D X3. Similarly let Y1 = R,

Y= R(H'(yo)), where R(A) denotes the range of the linear operator A, and let

Y2 be the one-dimensional subspace of R~ such that Rn 2 0 Y3. We define the

orthogonal projectors Q :Rn + Y3 and I - Q :Rn + Y2. For 0 < <s 6 we

define the linear operator BDs :X 1 x X2x X3-Y x Y2x Y3 by

B(s)(xl,x2,x3) = (aO(s)(xI+x 2+x3), (I-Q)H'(Y(s))(xl+x2+x3), QH'(y(s))(x1 +x2+x3)).

B(s) is equivalent to F y(y(s)) in the sense that
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Fy= CBD
yV

where C and D are regular matrices independent of s. B(s) can be decomposed In

a natural way into nine suboperators Bj (S) : X1 + Y, 1 < l,j < 3. From the

above definitions it follows that B2 1(0), B2 2 (0), B31(0), B32 (0) and B23(0)

vanish Identically. From (2.10) we conclude the crucial fact

*2 )12
ao()o = Or + (2-o)A0  0

This and the definition of X3, Y3 imply that B1 1(0) and B3 3(0) define

bijections, while as in (8] it follows that B2 1(0) = 0 and that B22 (0) is a

bijection between X2 and Y2- We can thus expand B(s) in a neighborhood of s 0

as ( B11(0) B12(0) B13(0)
B(S) = s221(0) sB2 2 (0) S523(0) + h.o.t. --

*S5 31(0) sB32(0) B33(0)

where B. (0), (0) and B6 (O) are linear operators from X into Y which are
I j i j I

uniformly bounded with respect to S. Thus det B(s) = 0(IsI) and hence B-1(s)

can be written as

a •.%'.

LE 11 (s) s-1 E12 (s) E1 3(s)

B-1(s) = sE2 1(s) s- E2 2 (s) E2 3 (s)

sE3 1(s) E3 2 (s) E3 3 (s) )ap'

where similarly the Elj are uniformly bounded and E2 2 (0) (622(0))-1 Is

regular.

a- * . .*. . . .
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4. Spurious Solutions

It is well-known that discretized problems possess frequently many more

solutions than the continuous problems. All discrete solutions that do not

* correspond to solutions of the continuous problem and disappear for h + 0, h the

discretization parameter, are called spurious or numnerically irrelevant

solutions. If we consider the simple model equation

(4.1) -Au = )f(u)

then there are essentially two types of those solutions. One type bifurcating -e

0 from X =±-in case f(u) has zeros and the other bifurcating from flul if

the growth of f is sufficiently strong. It might be argued that not too much p

effort should be spent on investigating those spurious solutions if the main

interest Is that of approximately solving the continuous problem. There are, :

however, at least two counter arguments. ..

First, In a multi-grid context where one hopes to be able to use rather

crude coarse grids on which the continuation will be done, one has to be aware - ..

of the spurious solutions since for 'large' h they are present for 'small'

values of OulI respectively X and thus may be more easily encountered. Second,

It has been shown recently ([9]) that for the second type of spurious solutions

some of these may bifurcate from a relevant branch. Thus they definitely will

be encountered and It becomes necessary to distinguish between spurious and

relevant solutions.

If we specialize (4.1) to

(4.2) -Au= Xeu In nl [ 0 , 1 ]n, u 0 on IQ

J! ~~

S..*..4 p
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then the proof in [9] covers the case n = 1 and a uniform grid of an even number

of points. The midpoint of [0,1] where the relevant solution attains its

maximum is then not a grid point. The discrete solution attains Its maximum In

the two neighboring points and from this branch bifurcate two branches attaining

their maximum in either of these points.

We had observed these solutions and their bifurcation previously when

numerically solving (4.2) for n = 2 by discretizing with the standard difference

method on a corresponding grid. We also have applied a multi-grid method to

compute spurious solutions ([14]). Since our goal is not to contribute to the

knowledge about the spurious solutions but rather to provide a general purpose

and If possible foolproof program to solve a general class of problems, it is

natural to investigate the above situation with the program PLTMG.

Our expectation is that the implemented continuation method allows us to

follow the spurious solution branches because these are genuine solutions of the

discrete problems. On the other hand the multi-grid process using several

discretizations simultaneously could help to identify spurious solutions. But

additionally all the other features offered by the program as the adaptive

refinement and the error estimators will have their impact on the solution

process respectively may give other hints about which solutions are relevant.

Since the program uses a finite element discretization with piecewise

linear elements we try to come close to the above discretization. The unit

square Is subdivided Into nine subsquares of length h = 1/3 and then all these

squares are divided Into two triangles by the SW - NE diagonal. This way the

Laplace operator will be discretized In the same way as by the five point star .

difference method. The right-hand side, however, in the finite element context

discretized by a quadrature formula will be different from the pointwise 0, .-*

Vn. V
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discretization of the difference method. This will introduce a bias in the .

SW-NE direction and we do not expect the relevant solution to attain its maximum

in the four interior nodes.

While the numerical results presented in the following, of course, make no

statements about the mathematical properties of the problem they provide some

valuable insight into the practical use of the program and the numerical

* solution in the presence of spurious solutions.

The branch starting at X = 0, r = Rul = 0 for the above discretization with

four nodes attains its maximum, as expected, in the points (1/3, 1/3), (2/3,

C 2/3) and has two equal but smaller values at (1/3, 2/3), (2/3, 1/3). When

following this curve beyond the limit point another sign-change of det (G ) is

encountered. Even a tracing of the neighborhood of this point with small

i* continuation steps shows an abrupt change of the sign. When asked to locate

this point the program ends up on a different branch and even a subsequent

branch switching does not lead back to the relevant branch. This suggests that

* instead of bifurcation a perturbed bifurcation seems to be present. This is not

so relevant here, since the fact remains that a sign-change seems to indicate

bifurcation and naturally a spurious branch is found. Table 4.1 shows the .

C continuation to and the location of the 'bifurcation' point. In the tables NI

denotes the number of corrector iterations and 8 Is a quantity that changes sign

at simple bifurcation points (cf. [2]).

_(- In the following we present multi-grid results for four different cases.

First we have followed the relevant branch up to r = 4.5 respectively r = 5 and ..

computed a 3-grid solution for fixed norm with uniform and adaptive refinement.

Table 4.2 contains only the refinement results. . . .

.. '.

4.

.J%~~~. A.f P IF r A
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*i

NI u, r det(G )u

Continue to X = .1 then to r = 1, r = 3, r = 3.44, r = 3.46.

1 O.OOOE0+0 O.OOOE+00 0.995E+00 O.O00E+00 0.492E 5 0.200E+01
1 0.100E+01 0.116E+00 0.992E+00 0.128E+00 0.276E 5 0.180E+01
1 0.390E+01 0.100E+01 0.244E+00 0.970E+00 0.190E 3 0.129E+00
2 0.156E+01 0.300E+01 -0.756E+00 0.653E+00 -0.623E 3 0.592E+00
2 0.111E+01 0.344E+01 -0.669E+00 0.741E+00 -0.185E 2 0.136E-01
1 0.109E+01 0.346E+01 -0.664E+00 0.745E+00 0.176E 2 -0.130E-01

Determinant changes sign; find bifurcation point by secant method on S.

1 0.110E+01 0.345E+01 -0.121E-01 0.130E-01 -0.113E -1 0.809E-05
1 0.110E+01 0.345E+01 0.192E+00 -0.215E+00 0.123E 0 -0.883E-04 Z
1 0.110E+01 0.345E+01 0.497E-06 -0.591E-03 0.482E -2 -0.369E-09

Table 4.1 Continuation along relevant branch, detection of spurious branch.

A posteriori error estimates based on solving local problems with higher-order

elements [5] are evaluated by the program and in Table 4.4 we give the number of

0 estimated correct digits in three different norms.

Following the irrelevant branch that attains its maximum at (1/3, 1/3) to

r = 5.5 and again refining uniformly and adaptively yielded the results in Table
C

4.3. We see that for the adaptive refinement it seems impossible to conclude

from the error estimations alone that the solution Is irrelevant, while for the

uniform refinement the error was estimated as bigger than the solution resulting
or."q

in a negative number of estimated correct digits. In this latter case also the

solution on the finest grid did not attain its maximum at (1/3, 1/3) but closer

to the center of the domain; i.e. the refinement had led onto a different

spurious branch.

b..4J i.-..
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NI X DUN det(GU) a

Level 1 solution at r =5.

2 0.264E+00 O..500E+O1 -0.255E+00 O.962E+OO 0.865E 4 0.891E+00

Refine uniformly.
Level 2 solution, no. of vertices 49. ~-~-

6 0.296E-01 O.500E+O1 -0.566E-01 O.993E+OO 0.530E 5 0.885E+00

Level 3 solution, no. of vertices 169. 4..

8 0.836E-02 0.500E+01 -0.230E-01 0.990E+00 0.626E 5 0.251E+00

Level 1 solution at r = 4.5.

2 O.431E+OO 0.L450E+01 -0.379E+00 0.921E+00 0.393E 4 0.824E+00

Refine adaptively.
Level 2 solution, no. of vertices 51.

5 0.598E-01 0.450E+01 -0.115E+00 0.983E+00 0.334E 5 O.465E+OO

Level 3 solution, no. of vertices 265.

9 0.402E-02 0.450Ei-01 -0.315E-01 0.862E+00 0.482E 5 0.504+E-03

Table 4.2 Results of refinement on relevant branch.

One of the possible ways provided by the program to depict the results

graphically Is to generate a histogram. Over a square grid numbers from 0 to 9

are printed covering uniformly the range of the solution values from minimum to

maximum. In Figures4.1 and 4.2 we see which solutions were computed on the

coarsest and on the finest grid for uniform and adaptive refinement.
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NI X nun X r det(Gu )

Level 1 solution at r = 5.5.

2 0.560E-01 0.550E+01 -0.772E-01 O.994E+00 -0.839E 5 O.219E+01 , *J *d .

Refine uniformly.

Level 2 solution, no. of vertices 49.

9 0.328E-01 0.550E+01 -0.367E-01 0.508E+00 -0.361E 5 -0.117E+00

Level 3 solution, no. of vertices 169.

10 0.474E-02 O.550E+01 0.112E-01 -0.990E+00 O.615E 5 O.182E+00 

Refine adaptively.

Level 2 solution, no. of vertices 41.

4 0.968E-02 0.550E+01 -0.194E-01 0.994E+00 -0.824E 5 0.691E+00 " ""

Level 3 solution, no. of verticies 174.

7 0.111E-03 O.550E+01 -0.386E-03 0.999E+00 O.638E 5 0.776E-01
.._ ..

Table 4.3 Results of refinement on spurious branch.

C Relevant Solution Spurious Solution
Norm .- .,,

Uniform Adaptive Uniform Adaptive

H 0.526 0.593 -0.955 0.448

L2  1.381 1.268 -0.312 1.198
LO 0.965 1.186 -1.099 1.183

Table 4.4 Numbers of estimated correct digits.

10 .,.

•%
-o&I,



-16-

000000000000000 000000000000000 000000000000000
000000000000000 000000000000000 000000000000000k
000011111111100 000011111100000 000000000000000
000122222222100 000112222111000 000011111000000 p
001233333332100 001123332211000 000111111110000 ** .

001234444432100 001234443321100 001122222110000
001246655432100 012345765321100 001233332211000
001367775432100 012357985432100 001244433211000
002578876432100 012358975422100 012357643211000
014689876432100 012356764321100 012359743211000

0024688764332100 001234543221000 001345543211000
024666532221000 001223332211000 001233322110000
024444211110000 000111221110000 001112211100000%
022221000000000 000000000000000 000001100000000
000000000000000 000000000000000 000000000000000

Figure 4.1 Histograms of the spurious solution on the coarsest grid
and for uniform and adaptive refinement.

000000000000000 000000000000000 000000000000000
000001111122220 000000000000000 000000000000000
000023333444420 000011111110000 000000111100000
000234455666420 000111222211000 000011111111000

*002356677886420 001122333221100 000112222211000
013467889986410 001123454322100 000122333221100
013468899975310 001234576432100 001123454321100
013578999875310 001235797532100 001223595321100
013579998864310 001234675432100 001123564321100
014689988764310 001223454321100 001123333221000

C 024688776653200 001122333221100 000112222211000
024666554432000 000112222111000 000111121110000
024444333320000 000011111110000 000001111000000
022221111100000 000000000000000 000000000000000
000000000000000 000000000000000 000000000000000

Figure 4.2 Histograms of the relevant solution on the coarsest grid and
for uniform and adaptive refinement.
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